Update.
[beaver.git] / mygpt.py
1 #!/usr/bin/env python
2
3 # Any copyright is dedicated to the Public Domain.
4 # https://creativecommons.org/publicdomain/zero/1.0/
5
6 # Written by Francois Fleuret <francois@fleuret.org>
7
8 import math
9
10 import torch
11
12 from torch import nn
13 from torch.nn import functional as F
14
15 ######################################################################
16
17 # A BracketedSequence is a BxTx... tensor with a first and a nb time
18 # steps to compute.
19
20 # Modules able to process it expect that they will have to process a
21 # first bracket starting at t=0, followed by a succession of brackets
22 # that move forward in time, do not overlap, and cover the axis T with
23 # no holes.
24 #
25 # Although it is more general, for a classical prompt-conditioned
26 # auto-regressive process it will be a first bracket starting at 0 and
27 # of arbitrary length for the "prompt", followed by brackets of length
28 # 1 for the successive tokens.
29 #
30 # Modules able to process brackets may implement a cache that is
31 # resetted when the input bracket starts at t=0
32
33
34 class BracketedSequence:
35     def __init__(self, x, first=None, nb=None):
36         self.x = x
37         self.first = 0 if first is None else first
38         self.nb = x.size(1) if nb is None else nb
39
40     def slice(self):
41         return self.x[:, self.first : self.first + self.nb]
42
43
44 ######################################################################
45
46
47 class WithResidual(nn.Module):
48     def __init__(self, *f):
49         super().__init__()
50         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
51
52     def forward(self, bs):
53         bs.x = bs.x + self.f(bs).x
54         return bs
55
56
57 ######################################################################
58
59
60 class CacheWrapper(nn.Module):
61     def __init__(self, *f):
62         super().__init__()
63         self.f = f[0] if len(f) == 1 else nn.Sequential(*f)
64
65     def forward(self, bs):
66         if bs.first == 0:
67             y = self.f(bs.slice())
68             self.cache_y = y.new(*((y.size(0), bs.x.size(1)) + y.size()[2:]))
69             self.cache_y[:, bs.first : bs.first + bs.nb] = y
70         else:
71             self.cache_y[:, bs.first : bs.first + bs.nb] = self.f(bs.slice())
72
73         bs.x = self.cache_y
74
75         return bs
76
77
78 ##############################
79
80
81 class AddPositionalEncoding(nn.Module):
82     def __init__(self, len_max):
83         super().__init__()
84         self.len_max = len_max
85
86     # [Vaswani et al 2018] PE_{t,2i} = sin(t/(L^{2i/D})), PE_{t,2i+1} = cos(t/(L^{2i/D}))
87
88     def forward(self, bs):
89         if bs.first == 0:
90             t = torch.arange(bs.x.size(1), dtype=bs.x.dtype, device=bs.x.device)[
91                 :, None
92             ]
93             j = torch.arange(bs.x.size(2), dtype=bs.x.dtype, device=bs.x.device)[
94                 None, :
95             ]
96             k = j % 2
97             self.pe = torch.sin(
98                 t / (self.len_max ** ((j - k) / bs.x.size(2))) + math.pi / 2 * k
99             )
100             self.cache_y = bs.x.new(bs.x.size())
101
102         self.cache_y[:, bs.first : bs.first + bs.nb] = (
103             bs.slice() + self.pe[bs.first : bs.first + bs.nb]
104         )
105
106         bs.x = self.cache_y
107
108         return bs
109
110
111 ##############################
112
113
114 class QKVAttention(nn.Module):
115     def __init__(
116         self, dim_in, dim_qk, dim_v, nb_heads=1, causal=False, attention_dropout=0.0
117     ):
118         super().__init__()
119
120         def randw(*d):
121             return nn.Parameter(torch.randn(*d) / math.sqrt(d[-1]))
122
123         self.causal = causal
124         self.attention_dropout = attention_dropout
125
126         self.w_q = randw(nb_heads, dim_qk, dim_in)
127         self.w_k = randw(nb_heads, dim_qk, dim_in)
128         self.w_v = randw(nb_heads, dim_v, dim_in)
129         self.w_o = randw(dim_v * nb_heads, dim_in)
130
131     def forward(self, bs_q):
132         x_q = bs_q.x
133
134         if bs_q.first == 0:
135             self.cache_k = x_q.new_zeros(
136                 x_q.size(0), self.w_k.size(0), x_q.size(1), self.w_k.size(1)
137             )
138             self.cache_v = x_q.new_zeros(
139                 x_q.size(0), self.w_v.size(0), x_q.size(1), self.w_v.size(1)
140             )
141             self.cache_y = x_q.new_zeros(x_q.size(0), x_q.size(1), self.w_o.size(1))
142
143         q = torch.einsum(
144             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_q
145         )
146         self.cache_k[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
147             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_k
148         )
149         self.cache_v[:, :, bs_q.first : bs_q.first + bs_q.nb] = torch.einsum(
150             "ntc,hdc->nhtd", x_q[:, bs_q.first : bs_q.first + bs_q.nb], self.w_v
151         )
152
153         a = torch.einsum(
154             "nhtd,nhsd->nhts", q, self.cache_k[:, :, : bs_q.first + bs_q.nb]
155         ) / math.sqrt(self.w_q.size(1))
156
157         if self.causal:
158             if bs_q.first == 0:
159                 self.cache_attzero = (
160                     torch.arange(x_q.size(1), device=q.device)[None, None, :, None]
161                     < torch.arange(x_q.size(1), device=q.device)[None, None, None, :]
162                 )
163             a = a.masked_fill(
164                 self.cache_attzero[
165                     :, :, bs_q.first : bs_q.first + bs_q.nb, : bs_q.first + bs_q.nb
166                 ],
167                 float("-inf"),
168             )
169
170         a = a.softmax(dim=3)
171         a = F.dropout(a, self.attention_dropout, self.training)
172
173         y = torch.einsum(
174             "nhts,nhsd->nthd", a, self.cache_v[:, :, : bs_q.first + bs_q.nb]
175         ).flatten(2)
176
177         self.cache_y[:, bs_q.first : bs_q.first + bs_q.nb] = y @ self.w_o
178
179         bs_q.x = self.cache_y
180
181         return bs_q
182
183
184 ##############################
185
186
187 class MyGPT(nn.Module):
188     def __init__(
189         self,
190         vocabulary_size,
191         dim_model,
192         dim_keys,
193         dim_hidden,
194         nb_heads,
195         nb_blocks,
196         causal=False,
197         dropout=0.0,
198         len_max=1e5,
199     ):
200         super().__init__()
201
202         assert dim_model % nb_heads == 0
203
204         self.embedding = nn.Sequential(
205             CacheWrapper(nn.Embedding(vocabulary_size, dim_model), nn.Dropout(dropout)),
206             AddPositionalEncoding(len_max),
207         )
208
209         trunk_blocks = []
210
211         for b in range(nb_blocks):
212             trunk_blocks += [
213                 WithResidual(
214                     CacheWrapper(nn.LayerNorm((dim_model,))),
215                     QKVAttention(
216                         dim_in=dim_model,
217                         dim_qk=dim_keys,
218                         dim_v=dim_model // nb_heads,
219                         nb_heads=nb_heads,
220                         causal=causal,
221                         attention_dropout=dropout,
222                     ),
223                 ),
224                 WithResidual(
225                     CacheWrapper(
226                         nn.LayerNorm((dim_model,)),
227                         nn.Linear(in_features=dim_model, out_features=dim_hidden),
228                         nn.ReLU(),
229                         nn.Linear(in_features=dim_hidden, out_features=dim_model),
230                         nn.Dropout(dropout),
231                     ),
232                 ),
233             ]
234
235         self.trunk = nn.Sequential(*trunk_blocks)
236
237         self.readout = CacheWrapper(
238             nn.Linear(in_features=dim_model, out_features=vocabulary_size)
239         )
240
241         with torch.no_grad():
242             for m in self.modules():
243                 if isinstance(m, nn.Embedding):
244                     m.weight.normal_(mean=0, std=2e-2)
245                 elif isinstance(m, nn.LayerNorm):
246                     m.bias.zero_()
247                     m.weight.fill_(1.0)
248
249     def forward(self, bs, mode='standard'):
250         bs.x = F.pad(bs.x, (1, -1))
251         bs = self.embedding(bs)
252         if mode=='standard':
253             bs = self.trunk(bs)
254             bs = self.readout(bs)
255         elif mode=='head':
256             bs = self.trunk(bs)
257         elif mode=='deep':
258             r = []
259             for l in self.trunk:
260                 bs = l(bs)
261                 r += [ bs.slice() ]
262             bs = BracketedSequence(torch.cat(r, -1))
263         else:
264             raise ValueError
265         return bs
266
267
268 ######################################################################
269
270 if __name__ == "__main__":
271     print("Basic check.")
272
273     vocabulary_size = 10
274     x = torch.randint(vocabulary_size, (9, 7))
275
276     model = MyGPT(
277         vocabulary_size=vocabulary_size,
278         dim_model=18,
279         dim_keys=50,
280         dim_hidden=100,
281         nb_heads=2,
282         nb_blocks=1,
283         dropout=0.1,
284     )
285
286     model.eval()
287
288     y1 = model(BracketedSequence(x)).x
289
290     y2 = torch.randn_like(y1)
291     for s in range(x.size(1)):
292         z = model(BracketedSequence(x, s, 1))
293         y2[:, s] = z.x[:, s]
294
295     # print(y1.max(dim = 2).values)
296     # print(y2.max(dim = 2).values)
297     print(f"error={((y1 - y2).norm() / (y1.norm() + y2.norm())).item()}")
298
299 ######################################################################