3 # @XREMOTE_HOST: elk.fleuret.org
4 # @XREMOTE_PRE: source ~/venv/pytorch/bin/activate
6 # Any copyright is dedicated to the Public Domain.
7 # https://creativecommons.org/publicdomain/zero/1.0/
9 # Written by Francois Fleuret <francois@fleuret.org>
12 import torch, torchvision
14 from torch.nn import functional as F
16 lr, nb_epochs, batch_size = 1e-1, 10, 100
18 data_dir = os.environ.get("PYTORCH_DATA_DIR") or "./data/"
20 if torch.cuda.is_available():
21 device = torch.device("cuda")
22 elif torch.backends.mps.is_available():
23 device = torch.device("mps")
25 device = torch.device("cpu")
27 ######################################################################
29 train_set = torchvision.datasets.MNIST(root=data_dir, train=True, download=True)
30 train_input = train_set.data.view(-1, 1, 28, 28).float()
31 train_targets = train_set.targets
33 test_set = torchvision.datasets.MNIST(root=data_dir, train=False, download=True)
34 test_input = test_set.data.view(-1, 1, 28, 28).float()
35 test_targets = test_set.targets
37 ######################################################################
40 class SomeLeNet(nn.Module):
43 self.conv1 = nn.Conv2d(1, 32, kernel_size=5)
44 self.conv2 = nn.Conv2d(32, 64, kernel_size=5)
45 self.fc1 = nn.Linear(256, 200)
46 self.fc2 = nn.Linear(200, 10)
49 x = F.relu(F.max_pool2d(self.conv1(x), kernel_size=3))
50 x = F.relu(F.max_pool2d(self.conv2(x), kernel_size=2))
51 x = x.view(x.size(0), -1)
52 x = F.relu(self.fc1(x))
57 ######################################################################
61 nb_parameters = sum(p.numel() for p in model.parameters())
63 print(f"device {device} nb_parameters {nb_parameters}")
65 optimizer = torch.optim.SGD(model.parameters(), lr=lr)
66 criterion = nn.CrossEntropyLoss()
71 train_input, train_targets = train_input.to(device), train_targets.to(device)
72 test_input, test_targets = test_input.to(device), test_targets.to(device)
74 mu, std = train_input.mean(), train_input.std()
75 train_input.sub_(mu).div_(std)
76 test_input.sub_(mu).div_(std)
78 start_time = time.perf_counter()
80 for k in range(nb_epochs):
83 for input, targets in zip(
84 train_input.split(batch_size), train_targets.split(batch_size)
87 loss = criterion(output, targets)
88 acc_train_loss += loss.item() * input.size(0)
96 for input, targets in zip(
97 test_input.split(batch_size), test_targets.split(batch_size)
100 loss = criterion(output, targets)
101 acc_test_loss += loss.item() * input.size(0)
103 wta = output.argmax(1)
104 nb_test_errors += (wta != targets).long().sum()
106 test_error = nb_test_errors / test_input.size(0)
107 duration = time.perf_counter() - start_time
110 f"loss {k} {duration:.02f}s acc_train_loss {acc_train_loss/train_input.size(0):.02f} test_loss {acc_test_loss/test_input.size(0):.02f} test_error {test_error*100:.02f}%"
113 ######################################################################